Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel.
نویسندگان
چکیده
We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.
منابع مشابه
Initial microfluidic dissolution regime of CO2 bubbles in viscous oils.
We examine the initial dynamical behavior of dissolving microbubbles composed of carbon dioxide gas in highly viscous silicone oils over a range of flow rates and pressure conditions. Microfluidic periodic trains of CO(2) bubbles are used to probe the interrelation between bubble dissolution and high-viscosity multiphase flows in microgeometries. We investigate bubble morphology from low to lar...
متن کاملDissolution of carbon dioxide bubbles and microfluidic multiphase flows.
We experimentally study the dissolution of carbon dioxide bubbles into common liquids (water, ethanol, and methanol) using microfluidic devices. Elongated bubbles are individually produced using a hydrodynamic focusing section into a compact microchannel. The initial bubble size is determined based on the fluid volumetric flow rates of injection and the channel geometry. By contrast, the bubble...
متن کاملA microfluidic approach to chemically driven assembly of colloidal particles at gas-liquid interfaces.
Bubbling up: Dissolution of CO(2) bubbles in a suspension of colloidal particles chemically induces the assembly of particles on the surface of shrunken bubbles, and thus yields rapid continuous formation of a colloidal armor. This approach maintains the high colloidal stability of particles in bulk, has increased productivity, and allows the formation of bubbles with precisely controlled dimen...
متن کاملFrom Discussion Session : Gas Exchange at High Wind Speeds : Recent Observations and Constraints
The discussion started with 4 brief presentations which provided a theoretical background for the ensuing discussion. The presentations are posted and thus not much detail on the presentations is included here. (1) Anna Rutgersson presented the basic air-side theory of gas exchange. She discussed how young waves are found under high wind speeds. In laboratory studies, the drag coefficient level...
متن کاملModeling bubbles and dissolved gases in the ocean
[1] We report on the development of a bubble concentration model and a dissolved gas concentration model for the oceanic boundary layer. The bubble model solves a set of concentration equations for multiple gases in bubbles of different sizes, and the dissolved gas concentration model simulates the evolution of dissolved gases and dissolved inorganic carbon. The models include the effects of ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 14 شماره
صفحات -
تاریخ انتشار 2014